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Abstract---For two classes of multiphase flow problems, upper and lower bounding principles are 
constructed for the rate of dissipation of mechanical energy as the result of viscous forces both in the 
bulk fluid and in the phase interface. These principles are developed for simple classes of non-linear 
constitutive equations for the bulk stress tensor and for the surface stress tensor. The integral 
mechanical energy balance relates these bounds to quantities that are subject to direct experimental 
evaluation. 

INTRODUCTION 

The purpose here is to develop bounding principles for two-phase flow systems that take 
into account the effect of the interfacial stress which acts in the phase interface separating 

the two phases. These bounding principles are of practical value because of the difficulty 
in obtaining exact solutions for this type of problem. 

The bounding principles developed in this paper are based upon those given by Hill 

(1956) and by Hill & Power (1956) (for a more complete development, see Ehrlich & Slattery 

1968 or Slattery 1972; it is also interesting to look at a later development from a different 
point of view by Johnson 1960, 1961). Hill 's bounding principles have been used previously 
to analyze single-phase flow systems (see for example Ehrlich & Slattery 1968 or Hopke  & 

Slattery 1970a, 1970b). 
We begin with a brief summary of the results from Hill's work that we shall be using here, 

This is followed by an extension of Hill's bounding principles to the flow of two phases and 
a two-dimensional analog of Hill 's bounding principles. We conclude with an indication 
of how these bounding principles are to be applied in practice. 

RESUL'TS FROM HILL 

Hill restricted his attention to incompressible fluids whose stress-deformation behavior 
could be represented by the generalized Newtonian model : 

S -= T + pI = 2r/D [1] 

r/ = r/(D). [2] 

Here S is the extra stress tensor, T is the stress tensor, p is the mean pressure, 1 is the identity 
tensor, q is the apparent  shear viscosity function, D is the rate of deformation tensor, 

I) - ½[Vv + (vv) T] [3] 
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and 

D ~ [tr (D" D)] ~:2. 

For this model of material behavior, there are two scalar potential functions 

E = E(D)=- rldD 2 

and 

such that 

and 

In [6] we have defined 

f s-' 1 Ec = E~(S) - dS 2 
4r 1 

[4] 

~c5] 

[6] 

S -= [tr (S' S)11/2. [93 

For the definition of the gradient of a scalar function with respect to a second-order tensor, 
see Slattery (1972) or Truesdell & Noll (1965). 

Hill's primary results follow from the realization that both of these potential functions 
can be required to be convex" 

E I D * ) -  ElD) > tr ~ . ( D * - D  [101 

and 

E c ( S * ) - E c ( S ) > - t r l ~ C . ( S  * - _  S)]. [11] 

Sufficient conditions for the convexity of these potential functions are 

I dE 
2r/ = fi ¢~/~ >_ 0 [121 

and 

dS daE 
dD - dD ~ >- 0. [131 

These conditions are consistent with observed fluid behavior. These two potential functions 
are related by 

E + E,. = tr (S. D) [141 

~Ec 
D -- } g ,  [S; 

~E 
s - a o  [71 
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which we will take advantage of in writing [10] and [11] as upper and lower bounds on E. 
Finally, so long as E is a homogeneous function of degree r (Kaplan 1952), 

rE = tr (S. D). [15] 

This relationship will allow us to relate bounds for the potential function E to a quantity 
that has more direct physical significance. 

A P P L I C A T I O N  T O  T W O - P H A S E  F L O W  

Prompted by Hill, let us see what the convexity of E and of Ec imply about a system 
containing two phases. We will make the following assumptions about this system. 
tl) Each phase is an incompressible, generalized Newtonian fluid. Consequently the 

equation of continuity reduces to 

div v = 0, [16] 

where v is the velocity vector and div denotes the usual divergence operation. 
(2) The external force per unit mass f (gravity) may be represented by the gradient of a 

scalar potential tp (potential energy per unit mass), 

f - -V~0.  [173 

(3) The velocity distribution is independent of time. The speed of displacement of the phase 
interface Ithe normal component of the velocity of a point on the surface) is con- 
sequently zero. 

(4) Inertial effects are negligible with respect to viscous effects and the equation of motion 
for each phase reduces to 

div (T - p~oI)= 0. [18] 

Here p is the mass density. 

(5) There is no mass transfer across the phase interface. As a result, the normal component 
of velocity at the interface is zero. 

(6) The tangential components of velocity are continuous across the interface. 
(7) Any surfactant present in the interface is uniformly distributed over the entire surface. 

The essential aspects of the general two-phase system are shown in figure 1. The phase 
interface ~ separates the region R ÷ occupied by the plus phase from the region R-  occupied 
by the minus phase. The total region occupied by the system is denoted by R, 

R = R  + + R - .  [19] 

Since the location of the phase interface is not always a known a priori, we will find it 
necessary at one stage in our discussion to assume that its location is ~*. This assumed 
phase interface location subdivides the regions actually occupied by the two phases : 

R + = R  ++ + R  +- [20] 

R-  = R - -  + R-  + [21] 



730 s. \v.  HOPKE a n d  J. c.  SLATTERY 

/ / J ~ s  ÷ * 

/ R ÷÷ 
/ 

S+-// + ' \ \  / ~ - - ~ - - ~  
/ R - > - /  , ~, 

/ Z \ / 
Z *~ \  ~S-+ 

, z 

F i g u r e  1. A c t u a l  p h a s e  in terface ,  5 = y *  + ~ , a n d  t r i a l  in ter face ,  22* = 2; *~ + I2" . 

Here R + + is that  por t ion  of R + on the plus side of bo th  Y~ and Y,* ; R + - is that  por t ion  of 

R + on the minus  side of l~* ; R -  - is that  por t ion  of R -  on the minus  side of bo th  Z and 
Z* ; R -  + is that  por t ion  of R -  on the plus side of I2". The  actual  phase interface 22 and the 
assumed phase  interface Z* are split as well: 

Z = E + + 12- [_22] 

Z* = 12"~ + Z * - .  [23] 

In these equat ions,  12+ is that  por t ion  of 12 on the plus side of 12" ; 12- is that  por t ion  of 
12 on the minus  side of  12" ; 12" + is that  por t ion  of Z* on the plus side of  12; E* is that  

por t ion  of Z* on the minus side of 12. Finally, the closed bounding  surface S of the two-phase  
system is c o m p o s e d  of four regions, 

S =  S ~+ + S + -  + S - +  + S - - ,  [24] 

where S + + is that  por t ion  of S on the plus side of  both  Z and  Z* ; S + - is that  por t ion  of 
S on the plus side of E and the minus side of  12" ; S -  + is that  por t ion  of S on the minus  

side of  12 and the plus side of E* ; S -  - is that  por t ion  of S on the minus  side of b o t h  2; and 
E*. In [19]-[21], we are ant icipat ing several appl icat ions  of Green ' s  t r ans format ion ;  our  
object  has been to split R into four regions in which the actual  density, velocity, s t ress , . . .  
d is t r ibut ions as well as their app rox ima t ions  are cont inuous  functions of position. 
Equat ions  [22]-[24] provide  us with the no ta t ion  for the closed bounding  surfaces of these 
sub-regions.  

In what  follows, an asterisk* denotes  an app rox ima t ion  for a dis t r ibut ion or configurat ion.  

The  nature  of  the app rox ima t ion  will be developed as we proceed. 
Recognizing [7], let us integrate [10] over  bo th  phases to find 

fR{ E ( D * )  - E ( D )  - tr [S- (D* - D)]} dV >_ 0, [25] 
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where tr denotes the trace of a second-order tensor and d V indicates that a volume integra- 

tion is to be performed. In this inequality, we regard D* and D* as being defined in terms 

of a trial or approximate velocity distribution v* that satisfies the equation of continuity, 

continuity of velocity at Z*, and all of the boundary conditions on the actual velocity 
distribution, 

on Sv'v* = v. [26] 

Here and in what follows we denote by Sv that portion of S on which velocity is specified. 
We can write the integral for the rate of production of internal energy in the region R + + as 

fR+ + tr (S. D) dV = fg ++ tr [(T - ptpl) • Vv] dV 

= fs++V'(T-ptpI)'ndA 

- f~+ v . ( T  - ptp l ) .~+  dA 

- f~,+ v.  (T - pcpI). ~*+ dA. [27] 

Here n is the outwardly directed unit normal to the closed suface S: ~ + is the unit normal 
to Z directed into the plus phase; ~* ÷ is the unit normal to E* directed into the plus phase; 

dA indicates that an area integration is to be performed. In arriving at this result, we have 
placed no restrictions on E*, the approximation to the actual phase interface configuration. 
If we add [27] and the similar relationships for R ÷ -,  R -  +, and R -  -,  we find 

fR tr (S. D) dV = fs v. (T - p(pI) • n dA 

/ .  
- J v . [ T . ~  - pcp~] dA [28] 

where the boldface brackets indicate the jump of the quantity enclosed across the interface: 

[fl~] = fl+~+ + f l - ~ -  = (fl+ - fl-)~+. [29] 

Using this result, we can write [25] as 

fRE(D)dV< f, E(D*)dV+ fs_s tV- V*).(T- p~oI).ndA 

- f~ (v - v*)- [ T . ~  - p~o~] d a .  [30] 

This will be known as the velocity extremum principle; it provides us with an upper bound 
on the volume integral of E, if the three integrals on the right side can be evaluated. 
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Let us no.w employ [8] in integrating [11] over both phases: 

fR~EciS*) E,,tSI - I D ' -  S)]} 'L31~ tr ~s* dV >_ 0. 

We define S* and S* in terms of a trial or approximate  stress distribution T* that satisfies 
the equation of motion [18] as well as the jump momentum balance at the phase interlace. 
In order to be consistent with [1], we require 

S* - T* - ~ t rT*l ,  i32i 

Using [14] and [28], we are finally able to arrange [311 as 

E(D) d V  >_ - E c ( S * ) d l /  + v. (T* - p*q~l)-ndA 

- / v. [T*.~,* - p*qo{*] dA i33] 
,) v *  

where p* denotes the density distribution consistent with X*. In arriving at this result, we 

have placed no restrictions on the trial interface configuration £*. This gives us a lower 

bound for the volume integral of the potential function E. We will refer to [33] as the stress 
extremum principle. 

The last integrals on the right sides of [30] and [33] distinguish the velocity and stress 

extremum principles obtained here from those proposed by Hill. It is also these integrals 

that make [30] and [33] impractical. In general we know neither the actual configuration 
of the phase interface nor the velocity and stress distributions at the phase interface. 

U N I F O R M  S U R F A C E  T E N S I O N  

In this section we will neglect all interracial effects other than a uniform surface tension. 
We must place two additional restrictions upon the class of physical problems to which the 

results of this section will be applicable. 
(8') We must be willing to assume that the actual phase interface Y- belongs to a given family 

of parallel surfaces, from which the trial surface E* will be chosen. For example, we 
may have experimental evidence to suggest that the interface is a plane parallel to the 
plane z = 0 in rectangular Cartesian coordinates. 

(9') We must also say that the actual velocity distribution v is everywhere tangent to this 
family of parallel surfaces. More explicitly, not only must v be tangent to Z and Z*, 
but we must also choose v* in such a manner  that it will be everywhere tangent to Z*, 

These assumptions may be satisfied at least approximately for flows that appear  to be 

unidirectional. 
If we neglect all interracial effects other than a uniform surface tension and if we assume 

that there is no mass transfer across the phase interface, the jump mass balance is satisfied 
identically and the jump momentum balance reduces to (Slattery 1972) 

at £ :  [ T . ~ ]  = - 2 H 7 ~ .  [34] 
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Here H is the mean curvature (McConnell 1957) and y is the surface tension. We will require 
that the trial stress distribution T* satisfies the same form of relationship at Y-*. 

Under these circumstances, [30] and [33] reduce to 

fRE(D)dV<_fREtD*)dV+fs (v - v*l-(T - ptpl)- n dA [35] 
--Sv 

and 

f .  f .  

JR E(D)dV > - JR Ec(S*)dV + Js v. (T* - p*(pl), n dA. [36] 

To review, the trial velocity distribution v* must satisfy the equation of continuity and 
all of the boundary conditions on the actual velocity distribution ; it must be both continuous 
at 57* and everywhere tangent to 57*. The trial stress distribution T* must be symmetric and 
it must satisfy both the equation of motion [18] and the jump momentum balance [34]; 
S* is defined in terms of T* by [32]. The actual velocity distribution v is assumed to be 
tangent to both E and 57*. 

The steady-state, stratified, laminar flow of two incompressible fluids through a duct is 
a flow for which [35] and [36] apply, at least approximately. We cannot be more definite, 
since the validity of assumptions (8') and (9') cannot be checked without both an exact 
solution and an analysis of its stability. For homogeneous potential functions E of order r 
as described by [15], the integral mechanical energy balance (Slattery 1972) reduces to 

l fv r fv ApQ/L = ~ tr (S. D) dV = ~ E dV. [37] 

Here Ap is the pressure drop in a duct of length L; Q is the total flow rate of both phases 
through the duct. Two approaches are possible. 
(i) Given the ratio of the volume flow rates as well as the pressure drop, we can use [35] 

to obtain an upper bound to the total volume flow rate. In this calculation we obtain 
an approximate interface configuration Z*, which can be employed together with [36] 
to find an approximate lower bound for Q. This lower bound is approximate, since E* 
is not directly fixed by the ratio of the volume flow rates. It is a function of how accurately 
the trial velocity distribution represents the actual one. 

(ii) If we are given the holdup cff each phase in the duct as well as the pressure drop, 57 is 
defined and [35] and [36] give upper and lower bounds for Q. 

MORE GENERAL INTERFACIAL STRESSES 

In addition to the seven listed previously, we must place another restriction upon the 
class of physical problems to which the results of this section will be applicable. 
(8") The configuration and location of the phase interface must be known a priori. For 

example, the interface may be a horizontal plane, the elevation of which is not a 
function of the flow. This means that the normal component of the trial velocity 
distribution v* will be required to be zero at 57. 
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For these problems, the last terms on the right of [30] and [33] rearrange into more readily 
useable forms for a broad class of interracial behaviors. 

We have already restricted ourselves to steady-state flows in which mass transfer across 
the phase interface can be neglected and in which any surfactant present in the interface ~s 

uniformly distributed over the surlace. If we now recognize that mass may be associated 
with the interface, the jump mass balance reduces under these conditions to (Scriven 1960: 

Slattery 1967). 

d iv~v ~I = divl~lv = 0, [38] 

where v ~°~ is the surface velocity vector. The tangential components  of v (~ are assumed to 
be equal to the tangential components  of v in either adjoining phase evaluated at Z,: the 

normal component  is the speed of displacement of the interface. Since there is assumed to 
be no mass transfer across the phase interface, we have identified at E 

v I"! = v. [39i 

The surface divergence operator  dive.) is discussed in the appendix. 

When interracial stresses are taken into account, the jump momentum balance becomes 
(Slattery 1964, 1967) 

[T" ~] = - div~,~T ~"~, [40] 

in which T ~ is the surface stress tensor (see appendix). This form of the jump momentum 
balance neglects the effects of inertial and external forces within the interface as well as 

mass transfer across the interface. 
We will assume here that the surface stress tensor T ¢"~ is a function of the surface rate of 

deformation tensor (see appendix) 

Dial = ½[P. V~.~v I"~ + (V(alv(°)) T. P] 

= ~[P-Vt.~v + (V~.~v) l .  P]. ~41~ 

We have introduced here the projection tensor P that transforms every vector on the surface 

into its tangential component  (see appendix); the surface gradient operator  V~,~ is defined 
in the appendix;  the superscript T denotes the transpose of a second-order tensor. The 
alternative expression for D ~) follows from [39]. The most general function of this form that 

also satisfies the principle of material frame-indifference (Truesdell & Noll 1965 ; Slattery 

1972) is 

T ~  = (7 + 2)P + 2~D ~ ,  [42] 

where 

In view of [383 

)~ = 2(tr D ~"~, D~"~), ~: = c(tr D ~1, D ~")) 

D ~"~ - [tr (D t"). D~"))]1/2 

[43] 

[44? 

tr D ~) = div(~ v ~ = 0, [45] 
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1(0, D’“‘) = 0. [461 

For this description of material behavior, there are two scalar potential functions 

s 

D(U)’ 
ECU’ = E’“‘(D’“‘) E E dD(“‘2 [471 

0 

[491 

and 

In [48], we have defined 

I$@ = ?!E 
c?S’“” [501 

SW E [tr (SW . Sqw. 

These two potential functions are related by 

[511 

Ek” + @’ = S@‘D@’ = tr (S’“’ . D(d). 

Both of these-potential functions can be required to be convex : 

WI 

E’“‘(D’“‘*) _ E’“‘(D’“‘) 2 tr 
[ 

aE’“’ 
(?I)‘“‘.@ 

(a)* _ DC”‘) 1 [531 

E’“‘(S’“‘*) _ @“(S’“‘) 2 tr C C g. (s’“‘* - S’“‘) 
I 

[541 

Sufficient conditions for their convexity are 

and 

dS’“’ dlE@’ 
--_== 
dD’“’ 

> 0. dD(“‘2 - 

These conditions are consistent with the limited observations of 
available in the literature. 

Recognizing [49], let us integrate [53] over the phase interface, 

z 

_ @DC”‘) _ tr [S(“) . (D(“)* _ I)‘“))]} dA 2 0. [571 

[551 

[561 

interfacial behavior 
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In this equation,  we regard D (")* as being defined in terms of the trial or approximate  
velocity distribution v* int roduced in the previous section. In view of [41] and [45], we may 
write 

tr (S t"). D (~)) = tr (T (~). D t~)) 

= tr (T ("). V(o> v (")) 

= tr (T (~. V(~ v). [ 5 s ]  

By an applicat ion of Green ' s  t ransformat ion for a surface (McConnell  1957), we are able 
to say 

fz tr (S(") . D(")) dA = ~cv . T(") . ~ ds - fx v . div(,, T(") [59] 

Here C denotes the closed bounding curve of the phase interface Y" la is the outwardly' 
directed unit normal  to the curve C : ds indicates that a line integration is to be performed. 
Using this result, we may express [57] as 

zE(~)(D (~)) dA <- fz  EIa~(D ~*) dA 

+ ~c(V - v * ) . T  i~. g d s  

- fx (v - v*). (divia I T ~")) dA. 

Recognizing [50], we may now integrate [54] over the interface, 

fz - E ~  ( S ) - t r  [D ~ S(~))]}dA > 0 .  {E~o)(S(~)*) (~) ( . )  . ( S ~ ,  _ _ 

In view of [52], we may also express this as 

f {E~)(S (~)*) + E(")(D (~)) - tr (D (~). S(")*)} dA >_ 0. 

Finally, by analogy with [59] we conclude 

fz  E(')(D(~))dA >- - fz  E~~)(S(~)*)dA 

+ ~c v • T (")* • !1 ds 

- fx v. div(~) T (")* dA. 

[60] 

[61] 

[62] 

[63] 
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Adding [30] and [60], we have 

fRE(D)dV+f~E~°'tDC~))dA<-fRE(D*)dV+fEt~)(D~='*)dA 
+ fs (v - v*)- (T - ptpI)" n dA 

- -  S v 

+ ~c (v - v*). T ~ .  It ds. [64] 

In arriving at this result we have employed the jump momentum balance [40] and we have 

observed that, in view of assumption (8"), the normal components of both v and v* are 
zero at E. Similarly, the addition of [33] and [63] yields 

fR E(D)dV + f~ E¢'~(D¢'~))dA > - fR E~(S*)dV 

- f,. E~'~'(St~'*)dA + fsv.tT*-p*q l).ndA 
+ ~c v. T ¢~)*. Ix ds. [65] 

Here we recognized that the trial stress distributions T* and T ~ *  must be consistent with 
the jump momentum balance [40] at E and that the normal component  of v must be zero 
at E. 

To summarize, the trial velocity distribution v ~ and v* must satisfy the jump mass balance 
[38], the equation of continuity, and all of the boundary conditions on velocity. The trial 

stress distributions T* and T ~ *  must be symmetric;  they must also be consistent with the 
equation of motion [18] and the jump momentum balance [40]. We define S* in terms of 
T* by [32] and S t"~* in terms of T t~* by 

S ~ *  - T ~°)* - l(tr T~*)P.  [66] 

We will restrict ourselves to potential functions E ~) that are homogeneous of degree p 
(Kaplan 1952): 

[ ~E ~ . ) 
pE ~) = tr I~D(,) D (~) 

= tr (S t~). Dr')). [67] 

For  the linear Boussinesq surface fluid model (Boussinesq 1913; Scriven 1960; Slattery 
1964), e is a constant and E t~ is a homogeneous function of degree two : 

EtO~ = 8D~)2. [68] 
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Another example is provided by the surface power model fluid tor which 

" S(¢~j 27  {n l t 2 n  

= ;:o[ 2c2J [69] 

In writing this expression, we have recognized that 

S (a}2 = 2e2120 ~0121''. [70] 

It follows immediately that for the surface power model fluid 

E{ m __ ~;o ( 2 D ~ a ) 2 ) o , +  [71] 

Uf  I = ~'o [72] 
n + 1 1 2c 2 ] 

and E ~ is a homogeneous function of degree n + 1. 
When we restrict ourselves to homogeneous potential functions E ~) that are of the same 

degree r as E in [15], then 

, '{fRE(D)dV+~E'"'(D'"})dA} 

= f R t r ( S ' D ) d V +  f~tr[S '~-D'~l)dA. [73] 

As a consequence, [64] and [65] give us upper and lower bounds on the rate of dissipation 
of mechanical energy resulting from the action of viscous forces both in the bulk phase and 

in the phase interface. 
More often we are concerned with Newtonian bulk fluid behavior, for which E is a homo- 

geneous function of degree 2, and with nonlinear interfacial behavior. Let us assume that 
the interface may be described by a surface power model fluid, for which E ~ is a homo- 

geneous function of degree n + 1 and for which n -< 1. In this case, 

E(D)dV + EI~){D~})dA >_ 2 t r (S .  D)dV + tr(S ~°~. D~°})dA , [74] 

and 

E(D)dV+ E(*)(D~a})dA <-ii4- 1 t r { S . D } d V +  tr(S~°).Dl*~)dA . [751 

These two inequalities can in tum be combined with [64] and [65] to provide upper and 
lower bounds on the rate of viscous dissipation of mechanical energy. 

As a simple application, consider a steady-state two-phase system with no entrances or 
exits and for which either [73] or [74] and [75] are applicable. From the integral mechanical 
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energy balances (Slattery 1972), we see that [64] and [65] provide us with upper and lower 
bounds on 

~ -  fs v'(T + p°I ) ( -n)dA + f c V T ~ " ( - " ) d s  
(m) 

- f R t r ( S . D ) d V -  f tr(S(~).D(°))dA, [76] 

the rate at which work is done by the system on the surroundings at the moving, impermeable 
surfaces St,, I of the system (beyond any work done on these surfaces by the ambient pressure). 

S U M M A R Y  

Bounding principles have been developed here for two classes of multiphase flow 
problems. 

In the first class of problems, all interfacial effects other than a uniform surface tension 
must be neglected and the stress tensor for the bulk fluid must be described in terms of a 
potential function E that is homogeneous of degree r, as indicated in [15]. Further, some 
a priori knowledge of both the interface configuration and the velocity distribution in the 
neighborhood of the phase interface is required in order to justify the assumptions (8') and 
(9'). When all of these conditions are met, [35] and [36] lead to upper and lower bounds on 
the rate of viscous dissipation of mechanical energy in the bulk phase. 

In the second class of problems, we require a priori knowledge of both the configuration 
and location of the phase interface. If both E and E ~) are homogeneous functions of the 
same degree r, then [64] and [65] give us upper and lower bounds on the viscous dissipation 
of mechanical energy. If E and E (~) are homogeneous functions of different degrees, [64] 
and [65] lead to bounds on the viscous dissipation of mechanical energy when used with 
easily developed inequalities such as [74] and [75]. 

The rate of viscous dissipation of mechanical energy is related through the integral 
mechanical energy balance (Slattery 1972) to quantities that are subject to direct experi- 
mental observation. 
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A P P E N D I X  

(~()mn~ellls 0t7 nolaliott 

Some of the no ta t ion  used in the text represents  an extens ion  to differential  geomet ry  of the coordinate- f ree  

no ta t ion  of tensor  analys is  (Slattery 1972). The results  are comple te ly  cons i s ten t  wi th  the presen ta t ion  of M cConnel l  

(I 957) inc luding  the use of the s u m m a t i o n  conven t ion  wi th  repeated indices.  
A surface is the locus of a point  whose pos i t ion  vector  z is a function of two pa rame te r s  .t ,~ and  .!: = : 

z = pill(),1 I'=!. [AI] 

Since the two numbers  3 'L and y2 unique ly  de te rmine  a point  on tile surlhce, we call  them smTlace ~oordinates. 
At every point  on the surface, the values of the spat ia l  vector  fields 

?p(O) ~?x ~ 
a~ ~ - I~ == 1,2) [A ?'7 

are t angent  to the )'~ coord ina te  curves  and  therefore tangent  to the surface. These two vectors  arc l inearly rode- 

pendent  and  every vector  t angen t  to the surface can be wri t ten  as a l inear  c o m b i n a t i o n  of them. We can reter to 

them as the natural basis fields. 

Let us define 

a~l ~ < a~.al/ .  [ A 3  

These are often referred to as the cova r i an t  c o m p o n e n t s  of the metr ic  tensor  IMcConne l l  1957). Let a be the 
de t e rminan t  whose  e lements  are the a=/, and  let a ~t~ be the cofactor  of Gt~ in a, d ivided by a. The dual basis fields 

a ~ = a~aa/j (~ = 1, 2) [A4~ 

are also l inearly independent .  Every vector  tangent  to the surface can be wri t ten  as a l inear  c o m b i n a t i o n  of them 

as well. 
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The surface velocity vector v t°) is an example of a vector defined on the dividing surface that has normal and 
tangential components : 

v (°) = v(~l~a~ + (v ~ • ~)~ 

= v~')a ~ + (v t~. ~)~. [A5] 

The v ~')~ are said to be the contravariant tangential components of v('); the v~ ") are the covariant tangential 
components. 

The projection tensor 

P = a~a ~ = a~a~ [ A 6 ]  

transforms every vector on the surface into its tangential component. 
The surJdce gradient of a scalar such as surface tension is defined as 

V(~)? = ~)'a ~. [A7] ~y~ 

A vector such as surface velocity v (") is an explicit function of position on the dividing surface. The surlace 
gradient of such a vector is similarly 

0V (a) 
V(.)v (#) = - - a L  [A8] ~y~ 

We have a particular interest in the surface rate of deformation tensor, which becomes 

D(-) =- ½ [ p .  V(.)v (') + (V(.)v(~)) r" P]  

= ½(v~, + t, I2))a~a ~ # , ~  , [A9] 

where the comma denotes surface covariant differentiation (McConnell 1957). Finally, the surjace divergence of a 
vector such as v (") is 

div(,,) v (°) =- tr (V(o)v (')) = v!~ ,)~ - 2Hv ("). ~. [A I0] 

The symmetric surface tensor T (') is a type of tensor defined on the dividing surface that transforms tangential 
vectors into tangential vectors and normal vectors into the zero vector: 

T ~ ) = P . T  (o).P 

= T(~)~a~a#. [ A 1 1 ]  

We can define the surface gradient of such a tensor in a manner very similar to our definitions for the surface 
gradient of a scalar and the surface gradient of a vector. Of particular interest to us here is the surface divergence 
of this type of tensor : 

l ~x ~ A 
div(o) T(O) = t~y~T~#],#ii 

= T,~aa~ + T~#B~ag. [A12] 

The comma again denotes surface covariant differentiation (McConnell 1957). The B~# are the components of the 
second groundform tensor (McConnell 1957). 

R6sum6--Pour deux classes de probl6mes d'6coulements multiphasiques, on construit des bornes 
sup6rieure et infgrieure du taux de dissipation d'6nergie m6canique rgsultant des forces visqueuses 
s'exerqant/l la fous dans le fluide proprement dit et aux interfaces eutre phases. On d6veloppe ces 
principes pour des classes simples d'6quations constitutiVes non-line/tires pour les tenseurs de con- 
traintes de volume et de surface. Le bilau global d'6nergie mgcanique relie ces bornes ~ des 
quantit6s susceptibles d'une 6valuation exp6rimentale directe. 
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A u s z u g - - F u e r  zwei Klassen  von P rob l emen  der M e h r p h a s e n s t r o e m u n g  werden obere  und untere  
Grenzen  fuer die D i s s ipa t ionsgeschwind igke i t  mechan ischer  Energie  festgelegt,  die eine Folge der  

Zaeh igke i t sk rae f te  sowohl  in der  H a u p t s l r o e m u n g  wic auch in der Phasen t rennsch ich t  isl. Diesc  

Pr inz ip ien  werden fuer e infache Klassen  vol~ n ich t l inea rea  Grundg l e i chungen  cntwickel t ,  fucr dic 

Spannungs t enso ren  in der  H a u p t s t r o e m u n g  und ~ln der  Oberf laeche.  Die [n tegra tb i lanz  der 

mechan i schen  Energie  setzt diese GrenzeJ~. zu Groesscn  in 13eziehung, die d i rek te r  exper imente l le r  

N a c h p r u e f u n g  zugaengl ich  sind. 

Pe310Me: :-YCTaHaB.~HBarOTCa BepXH~I~t H H[4)KH~I~ [parinllbJ A:la ~tBy× KJlaCCOB 3a/~,aql4 MHOI O(~1;~: 
HOIO TeqeHH~t C qyeTOM cKopocTH p a c c e a H ~  MexaHtlqecKo!~ )Hepll4H BC/le~CTB!4e ;IC~iCTBH~I CHrJ 
B~I3KOCTH KaK O6J~eMe ~<HaKOCTn, TaK H ua Me)K~)a3HOfi vpaHntte. YKa3aHHble HpHHUI411bt pa3BnTbt 
}lJlfl rlpOCTblX KJ'IaCCOB HeYlHHeI~HbIX OCHOBHbiX (ICaHOHHqecKI4X) ypaBHeHHfi, OTHOCflII1PIXCfl K 
TeH3opaM O61,eMI4OHalIpa~KeHHOrO H IIoBepXHOCTHOHaffpa~KeHHOIO COCTOflHHI~L Pa3HoCTb HHrC[- 

paJIbHO~ MexaHHqecKo~ 9HepF1414 yCTaHaBJIHBaeI CB~t3b 9T~IX I paHHqHblX ycJlOBrlfl C KOJlitqeCTBaMH, 

noaJlexcatUnMH HelIOCpe'~I, cTBeHHOIA )KCrlepI4MeHTa_rlbHO~ (31[CH~¢C 


